quinta-feira, 19 de março de 2015

Ficha de Leitura nº6

Unidade: Património Genético

Assunto: "Doping" Genético

Resumo: Com todos os avanços a nível genético já são possíveis mudanças no nosso material genético de forma a criar humanos ou animais com desempenhos ao nível de provas físícas fora do normal como animais com maior desenvolvimento por exemplo, quanto à hipertrofia muscular.

Building Better Athletes with Gene Doping

Over the years, the desire for better sports performance has driven many trainers and athletes to abuse scientific research in an attempt to gain an unjust advantage over their competitors. Historically, such efforts have involved the use of performance-enhancing drugs that were originally meant to treat people with disease. This practice is called doping, and it frequently involved such substances as erythropoietin, steroids, and growth hormones (Filipp, 2007). To control this drive for an unfair competitive edge, in 1999, the International Olympic Committee created the World Anti-Doping Agency (WADA), which prohibits the use of performance-enhancing drugs by athletes. WADA also conducts various testing programs in an attempt to catch those athletes who violate the anti-doping rules.
Today, WADA has a new hurdle to overcome—that of gene doping. This practice is defined as the nontherapeutic use of cells, genes, or genetic elements to enhance athletic performance. Gene doping takes advantage of cutting-edge research in gene therapy that involves the transfer of genetic material to human cells to treat or prevent disease (Well, 2008). Because gene doping increases the amount of proteins and hormones that cells normally make, testing for genetic performance enhancers will be very difficult, and a new race is on to develop ways to detect this form of doping (Baoutina et al., 2008).
The potential to alter genes to build better athletes was immediately realized with the invention of so-called "Schwarzenegger mice" in the late 1990s. These mice were given this nickname because they were genetically engineered to have increased muscle growth and strength (McPherron et al., 1997; Barton-Davis et al., 1998). The goal in developing these mice was to study muscle disease and reverse the decreased muscle mass that occurs with aging. Interestingly, the Schwarzenegger mice were not the first animals of their kind; that title belongs to Belgian Blue cattle, an exceptional breed known for its enormous muscle mass. These animals, which arose via selective breeding, have a mutated and nonfunctional copy of the myostatin gene, which normally controls muscular development. Without this control, the cows' muscles never stop growing (Grobet et al., 1997). In fact, Belgian Blue cattle get so large that most females of the breed cannot give natural birth, so their offspring have to be delivered by cesarean section. Schwarzenegger mice differ from these cattle in that they highlight scientists' newfound ability to induce muscle development through genetic engineering, which brings up the evident advantages for athletes. But does conferring one desirable trait create other, more harmful consequences? Are gene doping and other forms of genetic engineering something worth exploring, or should we, as a society, decide that manipulation of genes for nondisease purposes is unethical?

 

Nenhum comentário:

Postar um comentário